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Figure 1. Through the tree’s veil, sunlight weaves intricate shadows across a building facade. Visible and thermal images capture

complementary cues of reflected and absorbed light. Local and non-local visible-thermal ordinalities (Sec. 3) reveal albedo/shading edges
and point-pair ordinalities respectively, guiding an optimization using Double-DIP parameterization (Sec. 4). Our physics-based method
reconstructs the complex shading and albedo without learned priors, whereas state-of-the-art models fail (see supplementary).

Abstract

Decomposing an image into its underlying photometric fac-
tors—surface reflectance and shading—is a long-standing
challenge due to the lack of extensive ground-truth data
for real-world scenes. We introduce a novel physics-based
approach for intrinsic image decomposition using a pair
of visible and thermal images. We leverage the princi-
ple that light not reflected from an opaque surface is ab-
sorbed and detected as heat by a thermal camera. This al-
lows us to relate the ordinalities (or relative magnitudes)
between visible and thermal image intensities to the ordi-
nalities of shading and reflectance, which enables a dense
self-supervision of an optimizing neural network to recover
shading and reflectance. We perform quantitative evalu-
ations with known reflectance and shading under natural
and artificial lighting, and qualitative experiments across

diverse scenes. The results demonstrate superior perfor-
mance over both physics-based and recent learning-based
methods, providing a path toward scalable real-world data
curation with supervision.

1. Introduction

Understanding how a scene appears from the interaction be-
tween surface reflectance and incident illumination has long
been a central pursuit in vision and imaging sciences [3].
Disentangling these physical factors is useful for various
applications in graphics (recoloring, relighting, and com-
positing) and vision (object recognition and tracking). Re-
cent learning-based methods have made progress by formu-
lating this task in an end-to-end framework and inferring
statistical priors from auxiliary datasets to constrain the oth-
erwise ill-posed inverse problem [17]. However, collecting
ground-truth data for real-world scenes remains infeasible,



as measuring surface reflectance and shading requires spe-
cialized equipment and controlled procedures [19, 41].

In this paper, we introduce a novel physics-based frame-
work that leverages a single auxiliary thermal image to de-
compose a visible image of a scene into its albedo and shad-
ing components. To see why a thermal image is useful here,
we consider the underlying physical principles that govern
albedo and shading. Shading corresponds to the total inci-
dent energy (or irradiance) at a scene point, while albedo
represents the proportion of that energy reflected by the sur-
face. For opaque objects, the unreflected portion of the in-
cident energy is absorbed, which contributes to the thermal
radiation. This radiation can be detected by a thermal cam-
era in the long-wave infrared range (8-14 pm). However,
directly estimating the absorbed light is challenging without
prior knowledge of the surface albedo. A recent technique
called JoLHT-Video [33] addressed this issue by modeling
heat generation using heat transport equations and estimat-
ing it from the heat flow observed in a thermal video. In-
spired by their work, we pose the following question: What
can be achieved using only a single thermal image?

Since absorption of light increases the temperature of
an object, low-albedo regions—dark in the visible im-
age—appear bright in the thermal image, whereas shading
variations appear bright in both. Based on this observation,
we relate visible—thermal intensity ordinalities between any
two scene points to their albedo and shading ordinalities,
without having to estimate the absorbed light. Specifically,
the ordinality of neighboring scene points classify edges
into shading vs. reflectance and define an edge loss, while
non-local ordinalities yield a point-pair loss. These new
losses are used alongside the standard visible image recon-
struction loss to optimize a neural network (e.g. Double
Deep Image Prior [16]), effectively providing dense self-
supervision to recover shading and albedo.

Our ordinality theory is derived using the Lamber-
tian assumption and when illumination is confined to the
visible spectrum (e.g., LED lighting). We further ex-
tend it to broadband sources containing infrared energy
(e.g., sunlight, incandescent bulbs) by empirically ob-
serving that infrared albedo exhibits lower spatial varia-
tion than visible albedo [9], thereby preserving ordinali-
ties. Expert validation on diverse materials and natural
scenes—including those moderately violating the Lamber-
tian assumption—shows near-perfect agreement between
our automatically estimated point-pair ordinalities and con-
fident expert labels, confirming robustness across material
types and generalization beyond idealized conditions.

We quantitatively evaluate our method on scenes with
known reflectance (e.g. color charts) and known shading
(e.g. object imaged under identical lighting but painted dif-
ferently). We further test on visible-thermal pairs simulated
from the MIT Intrinsic dataset [19]. Finally, we demon-

strate qualitative results on complex indoor and outdoor
scenes with notable improvements over both physics-based
and learning-based methods trained on auxiliary datasets.
Our VT-Intrinsic dataset of visible-thermal image pairs can
offer supervision for learning methods in real-world scenes.

2. Related Work
2.1. Thermal Imaging for Physics-Based Vision

Thermal cameras have recently emerged as a powerful com-
plement to visible sensing across geometry [31, 32, 38],
materials [12], and appearance [2]. In intrinsic image de-
composition, JOLHT-Video [33] showed that transient ther-
mal video captured under controlled illumination provides
analytical cues for estimating absorbed and reflected light.
In contrast, our method relies on a single thermal image to
extract reliable ordinal constraints on albedo and shading
without the demand of video or lighting.

2.2, Intrinsic Image Decomposition (IID)

Owing to their ill-posed nature, intrinsic image decomposi-
tion methods generally fall into three categories.

Early optimization-based approaches: Retinex-
style [24] methods rely on stringent assumptions that hinder
generalization—such as smooth shading or reflectance [4],
chromaticity-preserving shading variations [11, 14, 18], or
local intensity similarity implying shared reflectance [36].

Learning-based approaches: Unsupervised learning
based methods that decorrelate albedo and shading [28] or
that enforce albedo consistency across changing illumina-
tion [26] improve upon hand-crafted priors. Supervised
learning-based models are primarily trained on synthetic
datasets [23, 25, 27, 34], which provide ground-truth albedo
and shading but face a significant sim-to-real gap. Exist-
ing real-world datasets [5, 22, 41] offer sparse annotations
used by models (e.g., to predict albedo ordinalities [43]),
but are limited to small-scale indoor scenes. Intrinsic-
vl [6] expands to more diverse data by using model pre-
dictions as pseudo-ground truth, albeit imperfectly. Recent
works [21, 29, 42] leverage diffusion priors for IID, yet as
noted in [7], they suffer from hallucination.

Using auxiliary sensors: Cheng et al. [8] used near-
infrared (NIR) images as shading proxies, but NIR albedo
often varies across materials (albeit less than visible) and
modern efficient lighting such as LEDs hardly emits NIR,
limiting generality and applicability. Sato et al. [35] used
intensity of sparse LiDAR returns and enforce consistency
with estimated albedos, yet LIDAR operates in NIR where
albedo differs from visible [8]. While such NIR cues help
in specific cases, our approach exploits the complementary
relation between visible (reflected light) and thermal (proxy
for absorbed light), enabling broader applicability.



3. Theory of Visible-Thermal Ordinality

We present the theoretical relationship between a visible
and thermal image pair and show that the ordinality of their
pixel intensities directly convey the ordinality of the under-
lying albedo or shading, as illustrated in Fig. 2. We first
consider visible illumination (e.g., an LED), then extend
our analysis to include invisible illumination (e.g., infrared
light). While we develop the theory for a grayscale visible
camera, the results can be adapted to multiple color chan-
nels, as shown in Section 4.

3.1. Visible-only Illumination
Consider an opaque Lambertian scene imaged by visible
and thermal cameras. The visible intensity at a pixel z is:

1,(x) = gp(x)n(z), (1

where p is the albedo (reflectance), n the shading (irradi-
ance), and g = k /7 a global scale determined by the camera
gain k. For brevity, we omit x denoting a single pixel.
Light not reflected is absorbed by the surface and con-
verted into heat, producing a heat source of intensity:

H=(1-pn. 2)
This heat propagates through conduction, convection and
radiation according to the heat transport equation. Though
‘H is not directly measurable, it can be inferred from sur-
face temperature, which is indirectly observed by a thermal
camera. JoLHT-Video [33] modeled the light-heat trans-
port using thermal video of the heating process to estimate
‘H and solve for p and 7. In contrast, we use a single thermal
image I; near thermal equilibrium, easily attainable within
seconds under stable lighting, as described in Sec. 3.3.
Together, I,, and the absorbed heat image #H impose local
and non-local constraints on albedo and shading.

3.1.1. Local (Edge) Constraints

The spatial gradient of the visible image can be written as:

VI, = g(Vp)n+ gp(Vn). 3)

For most edges in natural images, one of the two terms
on the right dominates—edges arise primarily from either
albedo or shading variations [18, 24]. This creates a fun-
damental ambiguity, but the spatial gradients of the heat
source provide complementary information:

VH = (=Vp)n+ (1 —p)Vn. @

From (3) and (4), note that
Albedo Edge(Vn — 0): sign(VI,) = —sign(VH), (5a)
Shading Edge(Vp — 0): sign(V1,) = sign(VH). (5b)

This yields a simple criterion to distinguish albedo- and
shading-dominant edges using the heat intensity image.

Visible Thermal Edges Points Shading Albedo

"

Figure 2. Printed (top) vs. projected (bottom) Roger Shepard’s
illusion [37]. Top: a printed paper lit by an incandescent bulb,
where reflectance variations reveal a saxophone player. Bottom:
the same pattern projected onto a uniform cardboard, where mod-
ulated shading reveals a lady’s face. This comparison highlights
the albedo-shading ambiguity and motivates modeling light-heat
transport: reflectance induces inverse visible—thermal ordinalities,
while shading yields consistent ones. Columns 3-4 show classified
albedo- / shading-dominant edges (Sec. 3.1.1) and points of lower
albedo / higher shading than « = (Sec. 3.1.2). Our method decom-
poses correctly (right), whereas baselines fail (see supplementary).

3.1.2. Non-Local (Point-Pair) Constraints

We generalize the above gradient analysis to compare point
pairs, i.e., any two distinct pixels x; and x; in the scene.

Ly(zi) = gp(xi)n(z:), H(z:) = (1 — p(z:))n(z:), (6a)
Ly(zj) = gp(xj)n(z;), H(z;) = (1 — p(z;))n(z;). (6b)

When a pixel’s visible intensity is lower (or higher) than

another’s while its thermal intensity is higher (or lower),
the pixel’s albedo is correspondingly lower (or higher).
Proposition 1 (Albedo Ordinality). Given two pixels, x;
and wj, with visible and heat intensities as in (6), if
I,(z;) < L,(x;) and H(z;) > H(z;), then p(x;) < p(z;),
and vice versa.

Conversely, when both visible and thermal intensities are
lower (or higher), its shading is also lower (or higher).
Proposition 2 (Shading Ordinality). Given two pixels,
x; and x;, with visible and heat intensities as in (6), if
Iy(z;) < In(zj) and H(z;) < H(z;), then n(z;) < n(z;),
and vice versa.

Proofs for Prop. | and Prop. 2 are in the supplementary.
The ordinalities here rely on H, the heat from absorbed vis-
ible light. Next, we incorporate invisible light and relate 7
to thermal image intensity, /;.

3.2. Visible and Invisible Illumination

Common light sources such as sunlight and incandescent
lamps emit significant invisible radiation (e.g., infrared).
While the visible camera captures only reflected light within
its spectral response, heat generation arises from absorbed
energy across all wavelengths. Thus, the equation for the
heat source intensity has an additional term as follows:

Iy
H=(1~-p,)n+(1 —pi)fn, (7

v



where p; is the average albedo in the invisible band, /; /1, is
the ratio of light intensity in the invisible and visible spectra.

While albedo variations are prominent in the visible
spectrum, their counterparts in the infrared are much
smaller [9]. Thus, we assume that p; is locally constant
within a region, allowing (7) to be approximated as:

H= (6 - pv)nv s.t. ﬁ =1+ (1 - pl)ll/l’v (8)

As [ is locally constant, (5b) still holds as VH is invariant
to a constant offset in 7. Also, as 5 > 1, Prop. | and
Prop. 2 holds whenever /3 is same for the two points.

3.3. Relating heat intensity to a single thermal image

The heat transport equation at a surface point is:
orT
ot

where Cj, is the heat capacity, 1" the surface temperature, ¢
time, h. the convection coefficient, T}, the air temperature,
e the surface emissivity, o the Stefan-Boltzmann constant,
T the surrounding temperature, ~ the thermal conductivity,
and A denotes the Laplacian operator along the surface. A
static scene under constant lighting reaches thermal equilib-
rium when the left side of (9) is zero, giving

H = (he + 4e0T3)T — kAT — (h T, + 4eaT?). (10)

Ch—rr =H+h(T, —T)+4ecT3(Ty — T) + kAT, (9)

The image intensity measurement 7; made by a thermal
camera is related to the temperature 7" as follows:

I, =eU(T) + (1 — €)U(Ty), (11)
where U denotes the thermal camera’s response function.
Linearizing U as U(T) = p1T + po in (11), we get

1 _ P +p1Ts(1 —¢)

T=aly—ay sta=—,a9=—"—""6H9/9oH—S.
€P1

€p1
(12)
Substituting (12) in (10), we get
H= Cllt — CQAIt — C3, (13)
eaT? K
where ¢; = h"tLTTS, = o and ¢ = (he +

4eoT3) (A0 4 (B T, + 4eoT?).

The thermal properties such as €, and x have small vari-
ations irrespective of the variation in albedo [40]. The envi-
ronmental variables such as h., T,, and T are also similar.
Therefore, c1,co and c3 are similar within a region. Also,
thermal conductivity of many common materials, exclud-
ing metals, is low. Likewise, the Laplacian of a tempera-
ture field at steady state has a much smaller magnitude than
absolute temperatures [40]. Therefore, we ignore the con-
duction term. Then, as ¢; > 0, the ordinal relationships

between H at two points is the same as that of I;.
Proposition 3. In local regions, c1,co and c3 are constant

so that for any two pixels x;, x;, if H(x;) is less (or more)
than H(x;), then I(z;) is also less (or more) than Iy(x ;).

3.4. Ordinality of Albedo and Shading

Using Prop. 3, we can extend the results from Eq. 5b to use
thermal image intensities, as summarized below:

Albedo Edge(Vn = 0): sign(V1,) = —sign(VI:), (14a)
Shading Edge(Vp = 0): sign(V1,) = sign(VI). (14b)

Similarly, we extend Prop. | and Prop. 2 to thermal image
intensities, yielding the following ordinal relationships:

Lo(i) > Lo(x5), Ie(wi) > Ii(;) = nla:) > n(x;), (15a)

Iy(wi) < Io(xj), Le(zi) < Li(z;) = n(xi) < n(z;), (15b)
Iy(zs) > I (zj), It (x;) < Li(x;) = p(z:) > p(x;), (15¢)
I(z) < Ip(z5), I (z:) > Li(z;) = p(x:) < p(x;). (15d)

3.5. Expert Validation on Ordinalities

We validated the accuracy and robustness of our theory of
ordinalities on a wide range of real-world materials and
scenes by comparing against domain expert labeling.
Patch Ordinality on Various Materials. The first evalua-
tion included 20 patches from CUReT dataset [ 10] and com-
mon objects (painted aluminum, plastic, wood, silk, leather,
cloth, plaster, etc.). These patches were placed in different
orientations under artificial and natural lighting. Experts
confidently labeled 865 ordinalities across patches. Our
prediction matched the expert labels with 98.59% accuracy
in sunlight (albedo: 99.37%, shading: 97.01%) and 96.82%
under white-LED (albedo: 94.62%, shading: 100%).
Point-Pair Ordinality on Diverse Scenes. We further
evaluated on 100 real-world scenes in VT-Intrinsic dataset
(Sec. 5), spanning materials such as stone, concrete, grass,
vegetation, painted metal, plastic, and wood. Experts la-
beled the ordinalities in albedo or shading of 20 randomly
sampled point pairs per image using the visible image as
reference. Pairs with small intensity differences were ex-
cluded to avoid ambiguity. Experts confidently labeled
1,063 pairs and found 937 unclear. Ignoring the latter, our
theory achieved 98.95% overall accuracy (albedo: 96.96%,
shading: 99.62%), confirming the reliability of thermal-
guided ordinal cues. More details are in the supplementary.

4. Method

Using the ordinalities as loss functions, we optimize the
albedo and shading from a visible-thermal image pair. Let
I, be a k—channel visible image and I; be the correspond-
ing aligned thermal image. Let p and 7) be an estimate of
the k—channel albedo and grayscale shading. Let I,, and p
be the grayscale image and albedo estimate, respectively.

4.1. Local (Edge) Loss
Using Eq. 14, we label edges (A for albedo, S for shading)

based on their local visible—thermal gradients (Fig. 2):
7> €

IVI| > em, lisr ionT

@ =10
xTr) = —
S |V[v| >€m,|%| <€p,

VI, VI



where ¢,, suppresses textureless regions and ¢, thresholds
the cosine similarity between visible and thermal gradients.
Before computing VI;, we apply Gaussian smoothing to
reduce noise while maintaining gradient consistency.
With the class labels above, we formulate an edge loss
that penalizes albedo gradients at shading-dominant pixels
and vice versa, where 2 denotes all image pixels:

_ 1 _ .
Ledge(p,,C) = @[ > IVa@IP+ > Iva@)IP]-
C(x)=S C(z)=A
. . a7
4.2. Non-Local (Point-Pair) Loss
During optimization, we use Poisson disk sampling [5] to
generate random point pairs across the image. Using Eq. 15,
each pair (x;,x;) is assigned a class label based on their
normalized intensity differences d1,, and §1;:
S+ oI, > €d, ol > €d,
S_ 0l, < —eq, 0I; < —¢q,
’P(mi,a:j) = v cd t cd (18)
A+ ol, > €d, ol < —€d,
A_ 6, < —€d, ol > €d,

where 61, = Le@)—1e(2) \with normalization Z so that
threshold €, is relative. The ordinal loss is a hinge-based

formulation that enforces separation beyond a margin &,,:

max(f]j — ﬁz + 5m70)7 ,P('riwr]') :S+7
,Cord =L Z maX(T/i — Ny + €m70)’ P(xi’xj):S_’
|7"( ) max(p; — pi + €m,0), Plxi,xz;)=Aq,
Ti,Tj
max(p; — pj +&m,0), Pz, z;)=A.

4.3. Regularization using Deep Image Prior

In complex real scenes, thermal noise can corrupt subtle
gradients, and ordinal constraints alone cannot fully deter-
mine absolute albedo or shading values—they only restrict
the solution space. Therefore, we adopt a variant of the
Deep Image Prior [39] to parameterize albedo and shading,
leveraging the inherent architectural prior in a randomly ini-
tialized network for regularization.

We employ a Double-DIP (DDIP) architecture [16]
with two networks V' (z4, 0 4), N (zs, Og) to parameterize
albedo and shading, respectively. Each uses a convolutional
encoder—decoder with skip connections [39]. © 4,0y are
randomly initialized model weights and z4,zg are ran-
domly sampled input noise vectors. The albedo network
outputs a k-channel image bounded to [0,1]* via a sig-
moid activation, while the shading network predicts a single
channel constrained by a non-negativity penalty. We freeze
z4 and zg while only optimizing for © 4 and Og.

4.4. Optimization

Our complete objective function is as follows.

£(ﬁ7ﬁ71v7[t) = HpA'ﬁ_Iv”Q'i‘)\l[/edge(@ﬁvc(l_vvlt))'i'
A2£0rd(/jaﬁap([vat))a (20)

Figure 3. Examples from the visible-thermal image pairs in the
VT-Intrinsic dataset, covering diverse scenes including parks,
schools, cathedrals, plazas, museums, and various urban streets.

where A1, A2 > 0 are the respective loss weights. The ther-
mal image is used only for edge or point pair losses, which
operate on the mean albedo. The reconstruction loss is de-
fined on the k—channel image.

5. VT-Intrinsic Dataset

Existing IID datasets lack thermal modalities, while cur-
rent visible-thermal datasets (e.g., captured from vehicles
or drones) focus on dynamic objects (people, cars) or non-
light-absorption based heat sources (engines, people) that
are out of scope for this work. So, we collected 600 vis-
ible—thermal image pairs (Fig. 3) across diverse stationary
scenes under varying illumination to validate our method.

Imaging System: We co-locate a FLIR Boson thermal
camera (512 x 640 resolution, 24° HFOV, < 50mK NEDT)
with an IDS UI-3130 color camera (600 x 800 resolution,
27° HFOV) using a gold dichroic mirror (BSP-DI-25-2).
For distant outdoor scenes, the cameras are placed side by
side and aligned via homography.

Data Acquisition and Preprocessing: We captured 20
exposure-bracketed color images with geometrically spaced
exposure times and merged them into a linear HDR im-
age [13] after edge-aware demosaicing in OpenCV. Five
frames were averaged to suppress sensor noise. The visible
HDR and thermal images were aligned via homography.

Our dataset contributes to the research community in
two key aspects. First, it provides a large collection
of high-quality real-world outdoor images with diverse
albedo—shading combinations, whereas prior datasets are
predominantly indoor or synthetic. Second, it offers abun-
dant pseudo-ground-truth ordinalities of albedo and shad-
ing, facilitating model training and evaluation. As shown
in Sec. 3.5, the thermal image produces reliable ordinalities
across arbitrary pixel pairs—previously only available in
limited form due to costly human labeling (ITW [5]).
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Figure 4. Results on a color-chart scene in JOLHT-Video dataset. Our method recovers the smooth line-light shading across the color chart.
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Figure 5. Results on Painted-Mask scene in JOLHT-Video dataset. Baselines show albedo texture in shading or highlight artifacts in albedo.

6. Experiments

Datasets: As typical IID datasets lack associated thermal
images, we construct the VT-Intrinsic dataset for qualitative
evaluation. Obtaining ground truth albedo and shading for
real-world scenes is impractical. Therefore, for quantitative
evaluation, we collected images of a color chart under dif-
ferent illuminations - white LED light, incandescent bulb
and sunlight. We also evaluate on the dataset from JoLHT-
Video [33], which contains four scenes of a color chart un-
der varied illuminations and a Painted-Mask scene. Finally,
we evaluate on the MIT-Intrinsics [19] dataset by simulating
an ideal thermal image using their pseudo-ground truth.
Metrics: We use the scale-invariant Mean Square Error
(si-MSE) to evaluate albedo and shading quantitatively.
Baselines: We compare with state-of-the-art meth-
ods in three categories. Learning-based: Diffusion-based
IntrinsicDiffusion [29] and RGB«+X [42], CNN-based
Intrinsic-vl [6] and Intrinsic-v2 [7], and Transformer-
based CRefNet [30]. Physics-based: NIR-Priors [8], re-
quiring a paired NIR image, and JoLHT-Video [33], de-
manding transient thermal video under controlled illu-
mination.  Optimization-based: RGB-Retinex [20] and
Opt-LocalSmooth [36]. IntrinsicDiffusion, RGB<+X, and
Intrinsic-v2 output colorful shading, while others grayscale.

6.1. Quantitative Evaluation

In this section, we present quantitative comparisons on the
simulated MIT-Intrinsics dataset, color charts under dif-
ferent illumination, and JoLHT-Video data [33], including
an ablation on the loss terms and Double-DIP parameter-
ization. The optimization generally converges in 5000 it-
erations with Double-DIP parameterization and 500 with-
out, averaging approximately 1 min and 5s per pair on a

Ours w/o DDIP RGB-Retinex

RGB<X IntrinsicDiffusion

CRefNet Intrinsic-vl  Intrinsic-v2

me

(R el 0 p

Input Simulated Our Our Baseline  Baseline
Visible Thermal  Albedo Shading  Albedo Shading

Figure 6. Qualitative comparison with the best baseline on MIT
Intrinsic dataset [19], IntrinsicDiffusion [29] . Our method excels
without learning priors by leveraging the simulated thermal image.

GeForce RTX 4090 GPU with parallelization. In challeng-
ing cases, additional iterations offer modest gains.

6.1.1. Simulated MIT Intrinsics Dataset

The effectiveness of our method depends on two orthogonal
factors: (1) the correctness of albedo—shading ordinalities
derived from visible—thermal pairs, determined by imag-
ing quality and the robustness of our theory to variations
in physical properties, and (2) the informativeness of such
ordinalities for intrinsic decomposition. With (1) validated
in Sec. 3.5, we isolate (2) by generating ideal absorbed-light
images as thermal input using pseudo ground truth from the
MIT Intrinsics dataset [19] via Eq. 2. Tab. 1 shows that
a single ideal thermal image achieves the lowest mean si-
MSE in 20 cases, surpassing learned priors and heuristics.

6.1.2. Color Chart under Different Illuminations

We imaged a color chart under white LED, incandescent
and sunlight. Tab. | shows our method outperforming base-
lines under all illuminations. Incandescent and sunlight ex-
periments demonstrate our robustness to albedo variations
even in the invisible band that influence absorbed light. In
contrast, physics-based baselines have limited applicability:
JoLHT-Video assumes no invisible lighting component, and
NIR-Priors requires NIR emission absent in white LEDs.
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Figure 7. Qualitative comparisons to state-of-the-art baselines. The first two scenes show how our method removes cast shadows from
albedo (e.g., shadow of handrail in case 1, lanterns in case 2). The next three demonstrate our ability to eliminate albedo texture from
shading (e.g., rhino statue texture in case 3, checkerboard pattern in case 4). But baselines struggle with these challenges, despite their
advantage of pre-training on large datasets, whereas our approach relies solely on physics-based information in a single thermal image.
Baselines often over-smooth albedo and shading (e.g., smooth albedo on detailed ground and walls, flat shading on grass) due to reliance
on priors. Diffusion-based baselines can offer appealing visual quality but sacrifice faithfulness (e.g. hallucinated albedo texture on the
rhino statue in case 3). Images are tonemapped for visualization. Key differences are highlighted in bounding boxes. More examples and
baselines appear in the supplementary.



Table 1. Results of si-MSE (]) reported at 10~2 across datasets

(Sec. 6.1.3, Sec. 6.1.2, Sec. 6.1.1). Best and second highlighted. Our

method surpasses all learning-based approaches despite using no learned priors and achieves performance comparable to JoLHT-Video,
which demands transient thermal video under controlled illumination. N/A indicates unavailable data, and X denotes non-applicability.

Method MIT Intrinsic Dataset

Color Chart w/ Different Illumination JoLHT-Video Dataset

Optimization-based

Learning-based Average  Average | White LED Incandescent  Sunlight Painted Mask  Color Charts

* Physics-based (w/ auxiliary sensor) Albedo Shading Albedo Albedo Albedo Albedo Shading Albedo
RGB-Retinex [20] (TPAMI'06) 15 9.1 2.42 2.33 2.73 25 0.30 3.4
Opt-LocalSmooth [36] (CVPR’11) 5.7 2.7 2.41 4.21 2.04 45 0.35 7.1
IntrinsicDiffusion [29] (SIGGRAPH'24) 3.3 1.2 4.12 3.33 4.85 37 0.25 2.9
RGB<X [42] (SIGGRAPH’24) 3.1 2.4 4.07 5.31 4.59 30 0.37 2.8
Intrinsic-v2 [7] (ToG'24) 5.6 1.5 1.25 4.36 4.17 27 0.17 2.8
Intrinsic-v1 [6] (ToG23) 5.0 32 1.55 2.72 4.97 30 0.21 3.8
CRefNet [30] (TVCG23) 4.9 2.6 1.79 2.29 1.98 38 0.23 8.8

# NIR-Priors [8] ICCV’19) N/A N/A X 2.46 2.08 N/A N/A N/A

# JoLHT-Video [33] (CVPR24) N/A N/A N/A X X 84 0.05

# Ours 1.9 0.5 0.37 1.06 1.19 11 0.10 2.7

6.1.3. Using JoLHT-Video Data

The dataset includes four color-chart scenes and a Painted-
Mask scene with pseudo ground-truth obtained follow-
ing [19], which are considerably more challenging due to
the strong lighting variations from line light (e.g. Fig. 4,
Fig. 5). As shown in Tab. 1, our method consistently out-
performs all learning-based baselines despite not relying on
pre-trained priors, and achieves performance comparable to
JoLHT-Video [33], which operates under stricter conditions
requiring transient thermal video under controlled lighting.

6.1.4. Ablation on Loss Terms and DDIP

We ablated the loss functions and Double-DIP parameter-
ization using pseudo ground truth from the Painted Mask
scene. Tab. 2 shows that combining ordinal, edge, and re-
construction losses with Double-DIP yields the best result.

Table 2. Ablation study on loss terms and Double-DIP parameter-
ization. We report the si-MSE for the Painted Mask scene.

Lrecon Ledge Lora DDIP Albedo | Shading |

1.1x107' 97x10°*
1.6x107  32x107*
2.2x 107! 18 x 1074
2.0x 107! 13x107*
4.0x107Y  79x 1074
3.3x 107! 22 x 107*
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6.2. Qualitative Evaluation

Fig. 7 presents comparisons with state-of-the-art baselines
across various scenes. The first two cases demonstrate our
ability to remove cast shadows from albedo (e.g., handrail
and lantern shadows), while the next two highlight dis-
entangling albedo texture from shading (e.g., thino statue
texture and checkerboard pattern). The final example is
an homage to the classic Adelson’s Checker-Shadow Illu-
sion [1], where our method successfully separates the shad-
owed checker region from the cylinder shading.

Learning-based baselines often over-smooth albedo and
shading due to strong statistical priors, producing flat grass
shading or overly uniform wall colors. In contrast, our
physics-based approach, guided solely by a single thermal
image, better preserves details such as block-wise albedo
variation, concrete texture, and natural shading gradients.

Fig. 4 and Fig. 5 show results on the JoLHT-
Video dataset, where our method faithfully recovers smooth
line-light shading without albedo leakage—comparable to
JoLHT-Video—while relying only on a single thermal im-
age. In contrast, baseline methods exhibit albedo leakage in
shading or highlight artifacts in albedo.

More cases and baselines are in the supplementary.

7. Limitations and Conclusion

This work explores photometric cues encoded in a single
auxiliary thermal image, and presents physics-based opti-
mization for albedo-shading separation. We showed its ef-
fectiveness on real scenes with a wide range of materials
and lighting conditions. However, diffuse reflection domi-
nates in these materials — metals, transparent objects and
mirrors violate the visible image formation model. Our
model also assumes that the heat arises primarily from light
absorption — heat generated otherwise internally (engines,
humans) or externally (hot air blower or fire) is not mod-
eled. Finally, we rely on inexpensive microbolometer ther-
mal cameras whose quality is lower compared to visible
cameras — low SNR due to insufficient heat generation
(overcast skies, dynamic objects) can degrade performance.
Failure cases and an SNR analysis of lighting intensity ver-
sus performance are provided in the supplementary. De-
spite these limitations, the strong improvements over all
baselines demonstrate the potential to scale supervision for
learning algorithms. We hope our work inspires further ex-
ploration of light-heat transport in vision and graphics.
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Physics-Based Decomposition of Reflectance and Shading
using a Single Visible-Thermal Image Pair

Supplementary Material

1. Proof for Propositions
Proposition 1. Given two pixels with visible and heat in-

tensities as in (0), if H(x;) > H(x;) and I, (x;) < I,(z;),
then p(z;) < p(x;), and vice versa.

Proof. Given

(1= p(xi))n(xi) >(1 = p(x;))n(x;) 1)
gp(zi)n(zi) <gp(w;)n(z;). (22)

Dividing the first eq. by the second and noting that all terms
are positive, we get

1—p(xi) _1-plz;)
= p(x;) < p(x; (23)
gp(w;) gp(z;) (#0) < plas)
Proof for the complement is omitted for brevity. O

Proposition 2. Given two pixels with visible and heat in-
tensities as in (6), if I,(z;) < I,(x;) and H(x;) < H(z;),
then n(x;) < n(x;), and vice versa.

Proof. Since multiplying an inequality by a positive scalar
and adding two inequalities of same order preserves the or-
der, we have

Iv(xz)
g

+H(z) < I“(ng) +H(z). 24)

From (1) and (2), note that I”T(m) + H(zx) = n(zx). Substi-
tuting in Eq. 24, we can see that

n(z:) < nlz;) (25)

Proof for the complement is omitted for brevity. O

2. Ordinality Validation on Diverse Materials

To further examine how material properties affect the valid-
ity of our theory and assumptions, we created scenes with
20 common material samples from CUReT dataset [10] and
daily objects under sunlight and white-LED, and conducted
expert validation on albedo-shading ordinalities. The de-
tailed list of 20 materials used is shown in Tab. 3.

Thermal Image under Sunlight

-

Visible Image under White LED

Figure 8. An example scene in expert validation on ordinalities
across diverse materials ( Sec. 3.5).

Visible Image under Sunlight

Thermal Image under White LED

Table 3. The 20 materials used in ordinality validation.

1. Terrycloth 11. Orange peel

2. Plaster 12. Wooden block

3. Felt 13. Yellow silk

4. Cork 14. Blue silk

5. Frosted glass 15. Painted aluminum can

6. Sponge 16. Painted metal handcart

7. Carpet 17. Plastic board w/ black paint
8. White leather ~ 18. Plastic board w/ white paint
9. Brick 19. Beige rubber block

10. Suede leather  20. Blue rubber block

3. Limitation and Failure Cases

The key limitations of our method arise when the relation-
ship between the absorbed heat from light (S) and the ther-
mal image intensity (I;) is violated, which can be summa-
rized by three categories: external heat generation, non-
opaque surfaces, and low signal-to-noise ratio (SNR). Fig. 9
shows representative failure cases.

To investigate how thermal image SNR is influenced
by low-light condition, we captured visible-thermal image
pairs of a color chart under an incandescent light at differ-
ent distance. We measured illuminance using a light me-
ter and computed si-MSE on the albedo decomposed by
our method. As shown in Fig. 10, si-MSE decreases with
increasing illuminance, indicating improved thermal SNR
and decomposition quality under higher illumination. For
reference, direct sunlight reaches about 100,000 lux, while
overcast daylight is around 6,000 lux [15].



Shading
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Figure 9. Corner cases: 1) The underside of a truck engine gener-
ates heat unrelated to light absorption, which elevates the thermal
intensity of the road beneath it. 2) The cathedral windows are non-
opaque, which violates the visible image formation model. 3) The
metallic fire hydrant has low emissivity, resulting in poor thermal
SNR, and exhibits specular highlights that challenge the common
Lambertian assumption in IID.
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Figure 10. Effect of illuminance on albedo decomposition accu-
racy. The albedo si-MSE ({) decreases as illuminance increases
(incandescent bulb at varying distances), reflecting improved ther-
mal SNR under stronger illumination. For reference, bright sun-
light reaches 111,000 lux, while overcast daylight is typically
1,000-2,000 lux.

4. Additional Qualitative Results

We provide additional qualitative results on VT-Intrinsic
dataset in comparison with state-of-the-art baselines. Each
case shows visible input with albedo estimations above and
thermal with shading below. Images are tonemapped / col-
ormapped for visualization.
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Figure 11. Qualitative comparisons to state-of-the-art baselines. Visible input with albedo estimations are shown above and thermal with
shading below.




Intrinsic-v2 [2024]

RGB<X [2024]

Figure 12. Qualitative comparisons to state-of-the-art baselines.
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Figure 13. Qualitative comparisons to state-of-the-art baselines.
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Figure 14. Qualitative comparisons to state-of-the-art baselines.
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Figure 15. Qualitative comparisons to state-of-the-art baselines.
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Figure 16. Qualitative comparisons to state-of-the-art baselines.
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Figure 17. Qualitative comparisons to state-of-the-art baselines.
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Figure 18. Qualitative comparisons to state-of-the-art baselines.
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Figure 19. Qualitative comparisons to state-of-the-art baselines.
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Figure 20. Qualitative comparisons to state-of-the-art baselines.
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Figure 21. Qualitative comparisons to state-of-the-art baselines.
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Figure 22. Qualitative comparisons to state-of-the-art baselines.
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Figure 23. Qualitative comparisons to state-of-the-art baselines.
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Figure 24. Qualitative comparisons to state-of-the-art baselines on a printed image.



Ours Intrinsic-v2 [2024] IntrinsicDiffusion [2024]
e

RGB~X [2024] Intrinsic-v1 [2023] CRefNet [2023] NIID-Net [2020]

Figure 25. Qualitative comparisons to state-of-the-art baselines on a projected image.
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